skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruhl, J E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we present improvements to the pointing accuracy of the South Pole Telescope (SPT) using machine learning. The ability of the SPT to point accurately at the sky is limited by its structural imperfections, which are impacted by the extreme weather at the South Pole. Pointing accuracy is particularly important during SPT participation in observing campaigns with the Event Horizon Telescope (EHT), which requires stricter accuracy than typical observations with the SPT. We compile a training dataset of historical observations of astronomical sources made with the SPT-3G and EHT receivers on the SPT. We train two XGBoost models to learn a mapping from current weather conditions to two telescope drive control arguments — one which corrects for errors in azimuth and the other for errors in elevation. Our trained models achieve root mean squared errors on withheld test data of 2[Formula: see text]14 in cross-elevation and 3[Formula: see text]57 in elevation, well below our goal of 5[Formula: see text] along each axis. We deploy our models on the telescope control system and perform further in situ test observations during the EHT observing campaign in April 2024. Our models result in significantly improved pointing accuracy: for sources within the range of input variables where the models are best trained, average combined pointing error improved 33%, from 15[Formula: see text]9 to 10[Formula: see text]6. These improvements, while significant, fall shy of our ultimate goal, but they serve as a proof of concept for the development of future models. Planned upgrades to the EHT receiver on the SPT will necessitate even stricter pointing accuracy which will be achievable with our methods. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in StokesI,Q, andUparameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in StokesQandIfor 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  3. The detection of satellite thermal emission at millimeter wavelengths is presented using data from the 3rd-Generation receiver on the South Pole Telescope (SPT-3G). This represents the first reported detection of thermal emission from artificial satellites at millimeter wavelengths. Satellite thermal emission is shown to be detectable at high signal-to-noise on timescales as short as a few tens of milliseconds. An algorithm for downloading orbital information and tracking known satellites given observer constraints and time-ordered observatory pointing is described. Consequences for cosmological surveys and short-duration transient searches are discussed, revealing that the integrated thermal emission from all large satellites does not contribute significantly to the SPT-3G survey intensity map. Measured satellite positions are found to be discrepant from their two-line element (TLE) derived ephemerides up to several arcminutes which may present a difficulty in cross-checking or masking satellites from short-duration transient searches. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Abstract We provide the first combined cosmological analysis of the South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPT-SZ cluster catalog and its dedicated weak lensing (WL) and X-ray follow-up observations. We build a new version of the Planck cluster likelihood. In the ν Λ CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find α SZ = 1.49 − 0.10 + 0.07 and 1 − b SZ = 0.69 − 0.14 + 0.07 , respectively. The results for the mass slope show a ∼4 σ departure from the self-similar evolution, α SZ ∼ 1.8. This shift is mainly driven by the matter density value preferred by SPT data, Ω m = 0.30 ± 0.03, lower than the one obtained by Planck data alone, Ω m = 0.37 − 0.06 + 0.02 . The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, (1 − b ) ∼ 0.8, and with results required by the Planck cosmic microwave background cosmology, (1 − b ) ∼ 0.6. From this analysis, we obtain a new catalog of Planck cluster masses M 500 . We estimate the ratio between the published Planck M SZ masses and our derived masses M 500 , as a “measured mass bias,” 1 − b M . We analyze the mass, redshift, and detection noise dependence of 1 − b M , finding an increasing trend toward high redshift and low mass. These results mimic the effect of departure from self-similarity in cluster evolution, showing different dependencies for the low-mass, high-mass, low- z , and high- z regimes. 
    more » « less
  6. Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1σdetection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg2SPT-SZ survey and targeted optical and X-ray follow-up data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1σCMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of statewby a factor of 1.3 toσ(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be forσ8, where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty onσ8by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4. 
    more » « less